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0. Overview

In my research, I would like to apply discrete differential geometry to the study of computational physics,

and apply computational physics to the study of discrete differential geometry — two areas that have a rich

history of interaction [Arn66, Sma70, Sou70, FM74, MW74, MW01, GBRT13, GBY18]. As such, I hope to

make contribution to both mathematics and physics.

Computational physics arose in the mid-twentieth century as a complement to theoretical and experi-

mental physics, but has come in more recent years to provide an criterion to all areas of modern physics. In

the graphics community, we mainly consider phenomena at the human scale, such as fluids and clothes. A

deep question, which will require both discrete differential geometry and functional analytic methods, is to

overcome the lack of analytic solvability of these problems — many aspects of computational physics have

been mathematically well-established, but there are many aspects yet to make precise.

Discrete differential geometry is an emerging field studying discrete versions of smooth theories (usually

from differential geometry). Instead of discretizing a problem based on approximations, one seeks for discrete

definitions of mathematical objects, discusses their structural properties, and finds theorems analogous to

their smooth counterparts. These discrete theories not only are bases for numerical methods, but also provide

new insight in the smooth theory in return.

One of the most important arenas of interaction between computational physics and discrete differential

geometry arises when one asks to classify the space of simulation process:

Question 1. How do we represent physical quantities with different features in space1 (such as grid, particles,

etc)?

Asking about the space is a way to more faithfully reflect features of the underlying mathematical

equations. There are a wide variety of approaches to geometric numerical integration [HHIL06] that can be

used to conserve energy, symplectic or Poisson Structures [MPS99], or remain on a Lie Group [CMO14]. It

is fundamentally a discrete differential geometry question because the space is always need to be reduced

into finite dimensional systems, and understanding these structures helps dramatically in the simulation.

My goal in this Research Statement is to review different aspect to answer Question 1 in fluid simulation,

as well as the questions I am pursuing.

1. Grid Aspect

Marker-and-Cell discretization scheme [HW+65, Bri15] is widely adopted in fluid simulation. With the

equivalence to a Discrete Exterior Calculus scheme, offers a unified approach to the construction of discrete

operators, backed by the rigor of differential topology.

Question 2. How can we construct algorithms satisfying mass-conserving, shape-preserving, and the con-

stancy condition?

In multiphase flow simulations, two classes of methods of treating the interface exists: (1) interface

capturing, wherein the interface front is represented by a set of connected marker points, and (2) interface

tracking, in which a marker function is employed to identify each fluid phase.

Interface capturing methods employ an additional equation governing the evolution of marker func-

tion, and any change in the topology of the interface occurs automatically, i.e. without any special-

ized reconstruction. Due to this advantage, interface capturing methods, such as volume of fluid (VOF)

[HN81, You82, HF00, SZ03, PJP04, JLCO14] and the level set (LS) [SSO94, OK05, OKZ07, Her08, Wac15]

methods are more popular and widely applied in multiphase flow simulations.

Conjecture 1. Phase Field could be written into commutative diagram to satisfy the above requirement.

Unlike the artificially smoothed level set function, the phase field function places the phase ratio and the

gradient of it together into the free energy function. In this way, the phase field function not only follows

the convective phase state, but also minimizes the total free energy of the system. Interfaces are always

consistent and do not have to be re-initialized [ZYF+10]. It is easier to keep the volume constant without

adding more system complexity [Jac99].

The evolution process of phase field is controlled by Ginzburg–Landau free energy as F(c,γ) =
∫
Ω
ψ(c)+

κ∥γ∥2dΩ, where γ = ∇c is enhanced flow variable. Thus the evolution operator in this system is formally

1This space should have the capability to express topological changes, such as rupture and coalescence. In the
corresponding representation, we would like to keep the interface between different material as sharp and clear as
possible.
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skew-symmetric, which constitutes a Dirac structure. Applying Green’s Theorem, this system can be con-

stituted as a port Hamiltonian system. According to Nishida et al. [NMI15], we can use a commutative

diagram to represent the above port Hamilton system.

On the other hand, Wang et al. prove the boundedness of the conservative phase field equation for the

first order Euler forward and predictor-corrector time integration schemes in the discrete exterior calculus

framework [WJHS23].

Question 3. How to design the Poisson bracket to integrate the kinetic and the Ginzburg–Landau free energy

in discrete space?

Nabizadeh et al. use B-spline to design divergence-consistent grid to represent divergence-free vector

fields [NRCY+24]. But unlike the continuous theory, the discrete space is in general not a Lie algebra. They

use the adjoint of the embedding function (from continuous space to discrete space) to pullback the discrete

Hamilton function.

Similarly, we can not equip the phase field with Lie algebra, due to the lack of additivity. So, is it

possible to provide an analogous basis for interpolation to expand the bounded phase field space? Under this

space, the port Hamiltonian system will degenerate into a finite-dimensional structure. For this structure,

it is necessary to use the orthogonal collocation method to discretize and add the dynamic process through

Symplectic integrators. Once this structure is obtained, we can perform corresponding energy error analysis

and order proof in the discretized space.

Question 4. Represent better boundary details and changing domain for discrete exterior calculus.

Question 5. As the Neural Network could compress the large amount of velocity data needed to evaluate

these long-tern characteristics [DYZ+23], and could model the symmetry transformations and the corre-

sponding generators [KS20, CCCH22, LT22, FMM+23]. How can we keep the simulation process on the

orbit of group action even if using Neural Network?

2. Meshfree Aspect

Due to the lack of additivity, using particles to carry the fraction of volume is a promising way to

attain the multiphase feature [Mon05, GK18, LRS20]. But it is known that the standard particle method

(which is equivalent to the element-free Galerkin method with an Eulerian kernel and nodal quadrature) has

two sources of instability: (1) rank deficiency of the discrete equations, and (2) distortion of the material

instability. The former is known as the particle inconsistency and the latter leads to the so-called tensile

instability.

Question 6. How to describe the particle system independent of specific distribution without sufficiently

dense?

Naturally, we can use P tp denote the index set for the particles. The time-dependent state (xp(t),up(t))p∈P
of the system would travel under a Lie group action by a generator v ∈ Xdiv(W ). And Nabizadeh et al.

show the evolution under Lie group integrator becomes an energy preserving integrator in the limit where

the particle density approaches a continuum[NRCY+24].

Conjecture 2. Pointwise divergence-free velocity field could help keep particle consistency.

Chang et al. reconstruct streamfunctions from the velocity data on a grid to obtain the exact divergence-

free flow interpolation [CPAB22]. But for free-surface and multi-phase fluid, the domain would get nonzero

genus and with a few obstacles removed, there are velocities that cannot be expressed by streamfunctions.

To overcome this, we need different gauge for the inside and outside part of domain respectively. For the

space to be extrapolated, there are no physical requirement. What one expects is a pointwise divergence-free

velocity field distribution consistent with the dominant fluid’s internal velocity. We could add some bridges

to connect the dominate phase to form simple connected domain.

On the other hand, Liu et al. place uniform-distributed virtual particles to exert pressure, and to give an

objective perspective on avoiding tensile instability [LHG+24]. But although particle method has C1 kernel

consistency for the interior regions, for the boudary regions, it does not even have C0 kernel consistency.

The particles would not keep divergence-free out of interior. And as the distribution of the particle could

not keep continuum all the time, the divergence is almost everywhere not 0.

Question 7. Is it possible to get pointwise divergence-free velocity field only by particles?

Question 8. As a Monte Carlo simulation could become a pointwise estimator for each substep with flexible

integration with existing velocity-based techniques [SBH24], how can we evaluate only a small number of

positions and produce unbiased results?
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3. Hybrid Eulerian-Lagrangian Aspect

Question 9. How to couple continuum-discrete solvers to ensure the conservation of relevant quantities.

This difficulty arises because the conservation equations at the two scales are formulated for fundamen-

tally different properties. Therefore, bridging the gap between micro- and macro- quantities is crucial but

extremely difficult to achieve. In the review on continuum-discrete solvers, Rui Sun and Heng Xiao, based

on physical reasoning and their experience with CFD-DEM simulations, pointed out that an ideal scheme

should meet the following five requirements [SX15]:

(a) conserve relevant physical quantities;

(b) be able to handle particles both in the interior cells and the cells near boundaries without producing

artifacts, including physical boundaries and processor boundaries in parallel computing;

(c) be able to achieve relatively mesh-independent results;

(d) be convenient for implementation in parallel, three-dimensional CFD solvers based on unstructured

meshes with arbitrary cell shapes;

(e) be able to produce smooth fields even with the presence of a few large particles in relatively small

cells.

If the above requirements could be met, proposing a flexible and easy-to-implement framework can make

the conservation structure more concrete, providing physical benchmarks for steady-state conditions.

Conjecture 3. Use Hodge star ⋆ to complete the dual between particles and girds.

The physical quantities on both sides of the Hodge star operator in the commutative diagram could be

stored on particles and meshes, respectively. Phase proportions and gradients are stored on particles, while

corresponding statistics are calculated on the mesh. The chemical potential gradient is then derived from

these statistics to update the particle states. This relationship ensures the conservation of total flux in the

Hamiltonian sense.

Adding particles outside the mesh allows for more comprehensive spatial sampling. The particle splitting

algorithm based on mass flow ensures that the phase proportions recorded on Lagrangian convective particles

do not exceed boundaries, thus preserving shape. The port-Hamiltonian system provides a physical basis

for the transfer of information between particles and meshes under the phase field.

Question 10. How to integrate finite particles to the Poisson bracket?

However, this operator only utilizes the commutative diagram derived from the port Hamiltonian to

construct a numerical algorithm for phase field information, and has only been tested for phase separation

scenarios. For a rigorous analysis and quantitative calculation of the Hamiltonian, it is necessary to design

a metric in a divergence-free velocity field space. Only with this metric can we obtain more precise physical

entities of exterior differential operators and differential forms, thereby achieving natural pairing of the

variables we select. On the other hand, to provide a computational process for our particle grid separation

strategy, we should design the corresponding Poisson brackets for derivation, rather than simply combining

with existing systems.

On the other hand, the particle systems is understood as the intepolation from the grid counterpart.

To exploit the divergence-free field better and gain lower interpolation errors proportional to the cell width,

higher-order interpolation strategies are needed. However, since velocity lies in Ω1(W )/ dΩ0(W ), higher-

order schemes may conflict with the interpolated and recorded velocity fields at the dual position. A more

generalized understanding of the physical entities corresponding to velocity fields in space is required.

With an improved understanding of the state space, my objective is to extend controllability principles

beyond linear time-invariant systems to encompass nonlinear dynamical systems. Differential flatness per-

tains to the flatness with respect to finite-order derivatives. Within continuous-time finite-dimensional flat

systems, it becomes possible to algebraically compute state and input trajectories based on the output and

its discrete-time derivatives. This algebraic approach allows us to invert system without resorting to numeri-

cal integration. The port Hamiltonian system, characterized by its differential structure, exhibits differential

flatness. Leveraging this property, we can design effective transfer strategies for achieving efficient control.
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